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Abstract

A variety of novel manufacturing techniques can be used to make materials with a periodic, three-dimensional (3D)
truss-like structure. The high stiffness per unit weight of such structures makes them attractive for use in sandwich
panels. In this paper, we analyze the elastic moduli as well as the uniaxial and shear strengths of one particular geometry
of 3D truss material as a function of the aspect ratio of the unit cell. The analysis gives a good description of the
measured properties. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A typical three-dimensional (3D) truss material made of a cast aluminum alloy is shown in Fig. 1. The
structure has a periodic unit cell with fully triangulated members. A variety of manufacturing techniques
are available for producing such materials. The top lattice, the bottom lattice and the core can be separately
injection molded with a polymer, assembled to form a complete structure, and then used as a mold for
investment casting if a metallic material is desired. The top lattice, bottom lattice and core can also be made
separately from a thin layer of silver, assembled and then electroplated with another metal, such as nickel.
The silver lattices are made as follows. All three layers (the top lattice, the bottom lattice and the core) are
made as flat grids. A master of each of the three patterns is made of an elastomer using conventional
photolithography. The master is then used to stamp a self-assembled monolayer onto a glass slide coated
with a 50 nm thick layer of silver. The silver which is not stamped with the self-assembled monolayer is
removed by chemical etching. The core layer is then folded to obtain the 3D structure, the three layers are
hand assembled and the resulting silver truss material is then electroplated with nickel. 3D printing tech-
niques can be used to build up the structure, layer by layer. Stereolithography techniques can be used to
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Fig. 1. Photograph of 3D truss material made from an aluminum casting alloy.

cure sequential layers of light-sensitive resin with a laser. The dimensions of the unit cell range from one to
tens of millimeters.

The fully triangulated, 3D truss structure induces axial forces in the individual members, so that it is
expected to have a high specific stiffness and strength, making it attractive for use in structural sandwich
panels. In contrast, metallic foams deform primarily by cell wall bending, reducing their effectiveness in
structural applications.

In this paper, we analyze the elastic moduli as well as the uniaxial and shear strengths of one particular
geometry of 3D truss material, shown in Fig. 1, as a function of the aspect ratio of the unit cell. The prop-
erties of the material are measured using conventional techniques. The analysis gives a good description of
the uniaxial and shear response of the 3D truss material.

2. Modeling

We consider an infinite plane of repeating unit cells in the x and y directions. The material has a depth of
a single cell in the z direction. The periodic unit cell for the material is shown in Fig. 2. Members located on
the sides of the unit cell are shared between two adjacent cells, so that the cross-sectional area of these
members is half that of the remaining members. The relative density of the structure (the density of the truss
material divided by that of the solid from which it is made) is given by:

p_*:4+4\/§+8\/AR2+(1/4)n<,,2>

0s AR b

where AR = &/b is the aspect ratio of the unit cell, r is the radius of a single member, and b is the cell base.
The unit cell has two planes of symmetry passing through the middle of the cell (the x—z and the y—z
planes). The presence of the symmetry planes requires that normal stress and strain be independent from
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Fig. 2. Unit cell of the infinite planar truss material, one cell high.

shear stress and strain, giving the material orthotropic symmetry. The linear elastic behavior can be de-
scribed by nine independent elastic constants, as shown below:
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The Poisson ratios, v;;, are defined for loading in the j direction as follows:
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The mechanical response of an infinite plane of the truss material was calculated from that of the unit
cell. Since the material is periodic before deformation, it must also be periodic after deformation, requiring
periodic boundary conditions. For loading by a normal stress, it is sufficient to constrain the unit cell faces
to remain flat, parallel and mutually perpendicular. For loading by a shear stress, we observe that each
shear mode is independent: for example x—z shear is independent from y—z shear. Consequently, we model
shear by imposing a single shear mode and then calculating the resultant stress. This approach leads to
individual sets of boundary conditions for shearing in the x—z, y—z, and x—y planes. The core struts, those
lying between the upper and lower faces, are identical in the x and y directions. It follows that the z—y and
z—x shear modes exhibit identical properties. For example, consider x—z shear imposed by fixing the lower
face and moving the upper face in the x direction. Only struts in the core deform, while struts on both faces
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remain unstressed. If instead we had displaced the upper face in the y direction the situation would be the
same: only the core members would be stressed. Since the core struts exhibit 90° rotational symmetry, z—x
and z—y shear response must be the same.

The analysis was done numerically with the aid of a microcomputer using two methods. In the first
method we wrote a truss-analysis program in MATLAB (The MathWorks, Inc., Natick, Massachusetts)
based on matrix methods outlined in Weaver and Gere (1990). The program offered flexibility for para-
metric analysis and data manipulation, but performed only linear elastic analyses. The second method
employed a commercial finite element code, ABAQuUs (Hibbitt, Karlsson, and Sorenson, Inc., Pawtucket,
Rhode Island). This approach confirmed selected results from the MATLAB analyses and allowed us to
extend the analysis to include nonlinear effects such as material yield and large deformation.

In both methods, the elastic moduli of the material were analyzed by treating each member of the unit
cell as a linear spring. Each end of the spring contains a single node where boundary conditions and/or
interconnections may be applied. In the matrix analysis the springs were modeled directly while in the finite
element analysis the members were modeled with truss elements, which are themselves linear springs. The
appropriate force—displacement relationship is:

F = % (X2 — Xl)
where A is the cross-sectional area, £ is Young’s modulus, L is the element length, and x; and x, are
displacements at the nodes.

In the finite element analysis, the solid material was modeled as elastic, elastic-strain hardening, or
elastic-strain hardening failure, depending on the analysis. Simple elastic analyses used a Young’s modulus
E = 69 GPa. Elastic-strain hardening analyses used a piecewise linear fit to experimental data for the
uniaxial tensile stress—strain curve for the solid which was measured as part of the experimental procedure,
described below.

Boundary conditions for the analyses were specified by dictating conditions for deformation in the x, y,
and z directions at each node. The node numbering and loading arrangement used to analyze x direction
deformation are shown in Fig. 3. Many nodes are left free in one or more directions. Some nodes are
restrained so that they cannot move: for example all the nodes on the bottom face are restrained the z
direction. Some nodes have imposed displacements: for example node 3, on the right side, is displaced in the
negative x direction. Many nodes are linked to other nodes, requiring that both nodes displace the same
amount: for example nodes 5, 8, 11, and 15 are linked to node 3 in the x direction. Linking greatly simplifies
periodic boundary conditions: for example all the nodes on the front face {1,2,3,9,10, 11} move together
in the y direction, so nodes {2,3,9,10, 11} are linked to node 1 in the y direction. If node 1 is free in the y
direction, the entire face can move but all the nodes must remain planar and the face will not rotate. '

Modeling the members of the unit cell as simple truss members implies that the joints are pinned and the
contribution of bending moments in the actual structure is neglected. The 3D truss material is fully tri-
angulated, meaning that it will support loads even if bending moments are neglected. To estimate the error
associated with using truss elements we considered a very simple triangulated structure: an isosceles right
triangle with the inclined members at 45° to the horizontal member and with dimensions similar to those of
the members in the 3D truss material; the inclined members had a length to thickness ratio, L/t of 8.5. The
triangle was analyzed using ABAQUS, once with truss elements, neglecting the contribution of bending
moments, and then again with beam elements, including the contribution of bending moments. A dis-

! The linking procedure was used in the matrix analysis and with ABAQUSs. The matrix analysis equations outlined in Weaver and
Gere (1990) had to be modified considerably to include linking. Linking was implemented in ABAQUS using the equation feature, which
can force one nodal degree of freedom to follow another.
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Fig. 3. Boundary conditions for the analysis of the unit cell for loading in the x direction.

placement was applied to the vertex of the triangle and resultant forces were calculated. The results indicate
that the error associated with neglecting bending moments is approximately 1.4%.

The unit cell model was used to calculate the properties of an infinite planar array of material one cell
high. The mechanical properties of the truss material were measured on specimens of finite size with a
relatively small number of unit cells. The stiffness and strength of finite size specimens are expected to be
greater than those for the infinite array as the outer edge members of the finite specimens are of full, rather
than half, thickness. The effect of specimen size on the calculated properties was analyzed by modeling the
finite structures, including all the elements and nodes, to represent the entire structure. The models were
assembled using a script which creates a model with any integer number of unit cells along each side. This
analysis was used both to characterize the effect of specimen size on the calculated properties of the truss
material and to compare the results of the models with the measured properties.

In the actual truss material, the inner members that extend between the upper and lower faces meet at a
point below (or above) the upper (or lower) faces. The inner strut offset, d, was measured to be 2.4 mm (Fig.
4). A more detailed model was developed to include inner strut offset. The model included additional nodes
at the correct endpoints of the inner struts. These were rigidly connected to nodes on the faces using the
equation feature of ABAQUS: X, y, and z translation was constrained to follow the translation of nearby face
nodes.

Fig. 4. Photograph of the truss material, showing the inner strut offset, d.
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The actual structure appears to be regular and we could not measure any variation in cell size (with
resolution 0.2 mm). In a perfect structure, multiple members experience the same stress and should, theo-
retically, fail at the same load. In practice, tension tests produced a significant variation in the failure
strain of the members: the average was 1.95% with a standard deviation of 1.25%. The models were
modified by introducing a random perturbation to the node locations, simulating random variation within
the individual struts, and guaranteeing that members would fail individually. Perturbations were applied to
the x, y, and z coordinates; each was chosen from a uniform distribution with mean 0 and range +2.5 mm.
Elastic and strength properties reported below represent a perfect structure; the perturbed results are re-
ported afterward for comparison.

Finally, the effect of the aspect ratio, /b, of the unit cell on the elastic moduli and uniaxial strength of
the truss material were calculated using the infinite planar model. The elastic properties were calculated for
a perfect model neglecting inner strut offset. The strength properties were calculated for a perfect model
including inner strut offset. The aspect ratio of the material tested in this study was 0.62.

3. Modeling results

The complete set of nine independent elastic moduli of the infinite planar array of the truss material,
neglecting inner strut offset, are plotted against aspect ratio, 4/b, in Fig. 5. The truss structure induces axial
forces in the members, so that the effective Young’s moduli and shear moduli vary linearly with relative
density, p*/p,. The effective moduli can then be written as:

—:C1<—) or —:C2<—).
Eq Ps Es Ps

In Fig. 5, the Young’s moduli and shear moduli are normalized by Young’s modulus of the solid, E;, and
the relative density, p*/p,, of the truss material so that the value of the constants C; and C, are given by the
ordinate of the plot. It is observed that G,. and G,. coincide, as expected. Three Poisson’s ratios are plotted
in Fig. 5; the three that have been omitted can be calculated using the reciprocal relation Ev;; = E;vj;.

The uniaxial strength of the ideal infinite planar truss material is plotted against aspect ratio, 4/b, in Fig.
6. The strengths have been normalized by the yield strength of the solid, o7 and by the relative density,
p*/p, of the truss material. Strength is defined as the peak stress. The model includes the inner strut offset
refinement (d = 2.4 mm), but not the random perturbations in the nodes. For small aspect ratios the offset
distance, d, becomes significant compared to the unit cell height so that the results are meaningful only for
aspect ratios greater than about 0.4.

The effect of specimen size on the calculated Young’s moduli of square tiles of the perfect planar truss
material is shown in Fig. 7, neglecting inner strut offset. As expected, the moduli decrease as the specimen
size increases, due to the effect of the edge members of full, rather than half, thickness in the finite size
specimens. The effect is most pronounced for loading in the x direction; in this case, it becomes significant
for specimens with fewer than six unit cells.

4. Experimental methods

The aluminum alloy truss material was obtained in square tiles 214 x 214 mm? (5.5 x 5.5 unit cells)
(Jamcorp, Wilmington, MA). The composition of the aluminum alloy was measured using wavelength
dispersive spectrometry (Jeol JXA-733 Superprobe, Peabody, MA). The truss members were cylindrical,
with radius » = 1.59 mm. The unit cell had a height, # = 23.50 mm and a base width, b = 38.10 mm.
Specimens for mechanical testing were cut from these tiles with a band saw such that they were slightly
oversized, with portions of struts extending beyond the load-carrying cells.
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Fig. 5. The calculated elastic moduli of the infinite planar truss material plotted as a function of the aspect ratio, /b, of the unit cell. (a)
Young’s moduli, (b) the shear moduli and (c) Poisson’s ratios. Young’s moduli and the shear moduli are normalized by Young’s
modulus of the solid strut material and the relative density of the truss material.

The uniaxial tensile stress—strain curve of the solid from which truss material was made was first
measured. Individual struts were cut from a tile and machined into waisted specimens suitable for tension
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Normalized Strength for Periodic 2D Material
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Fig. 6. The calculated uniaxial strength of the infinite planar truss material plotted as a function of the aspect ratio, 4/b, of the unit cell.
The strength is normalized by the yield strength of the solid strut material and the relative density of the truss material.

tests. The finished specimens had a waisted diameter of 2.54 mm and waisted length of 15.2 mm. They were
loaded in tension in a mechanical testing machine (Model 4201, Instron Corp., Canton, MA) while mea-
suring force with a load cell and strain with an extensometer of gauge length 12.5 mm. Seven specimens of
the solid material were tested.

The uniaxial compressive stress—strain curve of the solid was also measured. Individual struts were cut
into 14 mm long cylinders and tested in compression between steel platens (Model 4201, Instron Corp.,
Canton, MA). Force was measured with a load cell and displacement was measured with an LVDT (050
MHR, Lucas Shaevitz, Hampton, VA). Four specimens were tested in this manner.

The uniaxial compressive response of the truss material was measured directly on specimens cut from the
tiles. For loading in the x and y directions, the specimens were cut to be five cells long in the compression
direction, and one cell long in the perpendicular direction. For loading in the z direction, the specimens
were constrained to be only one cell high in the loading direction as this was the height of the tiles obtained
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Lattice Block Modulus as a Function of Tile Size
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Fig. 7. The calculated Young’s moduli of the truss material plotted against normalized specimen size, L/b.

from the manufacturer. Young’s modulus in the z direction was measured on small specimens (1.5 cells x 2
cells in area). All of these specimens were tested using a 25 kip capacity Instron testing machine (model
1321, Instron Corp., Canton, MA). However the capacity of this machine was insufficient to measure the
strength of the truss material in the z direction. Additional tests were performed on a 100 kip capacity
machine (MTS Test Frame 311.21, Minneapolis, MN) using larger specimens (2 cells x 4 cells). The
strength of the truss material in the z direction was measured from these tests. We were unable to obtain
reliable displacement data from the latter tests because the platens lacked mounting points for an LVDT, so
a reliable stress—strain curve was not obtained. In all cases the specimens were tested in compression be-
tween steel platens. Platens on the 25 kip machine were 25 mm thick, and platens on the 100 kip machine
were 50 mm thick. Force was measured with a load cell and displacement was measured with LVDTs
mounted directly to the platens (for the 25 kip machine). Three specimens were tested in compression for
each of the x, and y directions, and two were tested for each of the z direction experiments.

The shear response of the truss material was measured in accordance with ASTM standard C273-61
(1994). Due to sample size requirements, it was possible only to measure the shear response in the z—x and
z—y planes. A sample of the truss material of dimensions 12.75 in x 2.25 in was bonded to 0.5 in. thick
aluminum plates using the structural adhesive FM-123-2 (Cytec, Harve de Grace, MD). The assembly was
cured in an autoclave at 107°C and 0.28 MPa for 2 h. Tests were performed by pulling the sample in
tension, along the diagonal of the specimen. Displacement was measured with two high-precision LVDTs
(050 MHR, Lucas Shaevitz, Hampton, VA) mounted directly on rigid plates attached to the specimen.
Force was again measured with a load cell. Four specimens were tested in shear: two in the z—x plane and
two in the z—y plane.

5. Experimental results

The composition of the aluminum alloy was found to be 95% Al, 4% Si, and 0.2% Fe, with traces of Cu
and Zn. This composition is similar to alloy 443, a casting alloy with 4.5-6.0% Si. Since the truss material is
manufactured through investment casting, we expect the aluminum to be a casting alloy.
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Solid Strut Material Response
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Fig. 8. Uniaxial tensile and compressive stress—strain curve for the solid strut material.

Typical uniaxial tensile and compressive stress—strain curves for the solid aluminum alloy specimens are
shown in Fig. 8. The tensile curve exhibits mild yielding and then brittle fracture, perhaps related to a void
nucleation and growth mechanism. The compression curve exhibits yielding, strain hardening, and even-
tually a decrease in load corresponding to specimen buckling. Young’s modulus, E;, is 69 GPa and the 0.2%
offset yield strength, a7, is 224 MPa. The strain to failure for the tensile stress—strain curve shown is 1.3%;
values varied from 0.4% to 4.0% among the seven tests. The low ductility is typical of brittle aluminum
casting alloys. Alloys 443.0-F, B443.0-F, and C443.0-F have yield strengths of 55-110 MPa, tensile
strengths of 130-230 MPa, and elongation to failure of 8-10% (Davis, 1996). The tensile stress—strain curve
shown in Fig. 8 was used for the elastic-strain hardening failure analyses since it gives a conservative es-
timate of the failure strain.

Typical stress—strain curves for loading the truss material in the x, y and z directions are shown in Fig. 9.
For loading in the x and y directions, the curves initially exhibit an increasing slope, corresponding to the
specimens deforming slightly to contact the loading plates at each point across the loading surface. Sub-
sequent loading produces a linear stress—strain relationship. Eventually the specimens begin to yield and the
slope of the curves decreases slowly. When the first member fails the stress drops instantaneously. This and
subsequent member failures are accompanied by audible pings. The specimens were partially unloaded for
elastic modulus calculations; the unloading portions of the stress—strain curves overlap the loading curves.

The properties of the truss material in the z direction were measured in two sets of tests due to difficulties
with the capacity of the testing machines and with measuring displacements. The first set gave the linear
elastic portion of the stress—strain curve, shown in Fig. 9, while the second gave the failure stress. The
average value of the compressive strength of the truss material in the z direction is 9.01 MPa.

Failure in specimens loaded in the x direction corresponded to the sudden fracture of individual
members loaded in tension (Fig. 10a). Failure in specimens loaded in the y direction corresponded to
buckling of individual top- and bottom-lattice members loaded in compression (Fig. 10b). Failure in
specimens loaded in the z direction corresponded to tensile fracture in top and bottom members and
buckling in core members (Fig. 10c).

A typical stress—strain curve for loading in shear in the z—x plane (equivalent to the z—y plane) is shown
in Fig. 11. The curve is initially linear and gives, on average, a shear modulus of 1.17 GPa. The modulus
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Experimental Response of Lattice Block Specimens
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Fig. 9. Measured uniaxial compressive stress—strain curves for the truss material for loading in the x, y and z directions.

was calculated from partial unloading curves, which happen to overlap the loading curves exactly. The
measured moduli had a standard deviation of 9%. After loading the stress dips slightly, rises again, and then
declines slowly, corresponding to debonding between the specimen and the aluminum plates. As a result of
debonding, we were unable to measure the yield and failure response in shear.

6. Discussion

The predicted and experimental data for elastic properties are compared in Table 1. The calculated
values are the results obtained by modeling the exact geometry of the test. For example, the x direction
compression tests used 5 cells x 1 cell specimens, so the calculated value for x direction modulus is obtained
by modeling a 5 cells x 1 cell structure. The calculations used perfect models (no node perturbations) and
included inner strut offset. Agreement between the experimental data and model results is good. The dis-
crepancy between experiment and model for E,, E,, E., and G,. are —15%, +3%, +7%, and —27%, re-
spectively. Elastic properties for the infinite planar array and for an infinite truss material in 3D are also
included in Table 1. The moduli of the finite material are higher than those of infinite material, due to the
full, rather than half, thickness of the members at the edges. The 3D periodic calculations assumed a
material with the same unit cell dimensions and the same member diameter as the tested specimens. This 3D
periodic material has a relative density 9.89%, well below 14.2% for the two dimensional (2D) periodic
material. The lower relative density occurs because the top and bottom faces contain half-thickness
members, rather than the full-thickness members in the 2D periodic material.
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Fig. 10. Photographs of the failed specimens loaded in the (a) x (b) y and (c) z directions.
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Fig. 11. Measured shear stress—strain curve for loading in the x—z plane.
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Table 1
Comparison of predicted and experimental elastic properties
Measured Calculated % error 2D periodic value 3D periodic value
(GPa) (GPa) (GPa) p*/p, = 14.2% (GPa)* p*/ps = 9.89%
E, 1.13° 0.96° —15% 0.87 0.54
E, 4.33¢ 4.45¢ +3% 2.96 1.67
E. 1.264 1.35° +7% 1.22 1.10
G., Gy, 1.17 0.92¢ =27% 0.70 0.46
G, 0.89 0.43

#Calculations are based on models that do not include inner strut offset.

®Specimen was 5 cells x 1 cell, aligned along x direction.

“Specimen was 5 cells x 1 cell, aligned along y direction.

4Specimen was 1.5 cells (x direction) x 2 cells (y direction).

¢ Average from two models: a 1 cell x 2 cells model and a 2 cells x 2 cells model.

fShear specimens were 8.5 cells x 1.5 cells. Two were tested with the long axis along the x direction, and two were tested with the
long axis along the y direction. Results were the same within scatter, as predicated by symmetry.

€ Average from two models: an 8 cells x 1 cell and a 9 cells x 2 cells model.

The model also predicts the nonlinear stress—strain response of the truss material. Results from three
tests of x direction compression are plotted together with model results in Fig. 12. This model includes a
random distortion to node positions to capture random variations in specimen geometry and material
response. The model gives a good description of the measured compressive stress—strain curve. Results from
tests of y direction compression agree equally well during linear loading and yielding, but the model un-
derestimates failure stress. The elastic-hardening model (without material failure) gives a good description

X-dir Response: Compare Model and Experiment

8 .
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5

Stress (MPa)
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Fig. 12. Comparison of the measured and predicted stress—strain curve for the truss material for loading in the x direction.
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Table 2
Failure stress for lattice block material, model and experiment
Experiment (MPa) Model (MPa)* Model ( )/experiment
o 6.50 8.03 (7.28) 1.12
a; 18.31 15.11 (14.72) 0.80
[ 9.01 8.92 (8.42) 0.93

Specimen sizes: x and y direction specimens were 5 cells x 1 cell. The z direction specimens were 2 cells x 4 cells.
4Two values for each model are given. The first is for a geometrically perfect model, and the (second) is for a model that includes
random distortions in initial node position.

of the stress—strain curve up until failure. The measured strengths for loading in the x, y and z directions
are compared with the model results in Table 2. The model predicts ¢ and ¢} well, but underestimates
o

The larger discrepancy in o}, may be understood by considering possible failure modes for individual
members: yield and brittle failure in tension, yield and brittle failure in compression, and buckling. The
model uses simple truss elements, and therefore captures only tension and compression failures. Buckling,
which is physically possible, is neglected entirely in the simple model.

Some insight into actual failure mechanisms is gained by considering relative stresses in the linear elastic
model. Relative stresses in individual members, which are calculated by normalizing the maximum member
stress, are displayed for x, y, and z direction loading in Fig. 13. Specimens loaded in the x direction exhibit
the largest stress and strain in face members loaded in compression. These members probably yield first, in
compression, leading to increased strain in surrounding members. Tensile member stress and strain increase
for compatibility, eventually leading to tensile member fracture. Finally compressive members bend and
begin to crack on the tensile side. Specimens loaded in the y direction exhibit the largest stress in com-
pression face members located parallel to the y direction. These members run continuously through the
specimen in the y direction. Probably these members yield in compression and then buckle plastically
during failure. Specimens loaded in the z direction exhibit the largest stress in core members running be-
tween the upper and lower faces. Probably these yield in compression, and eventually buckle plastically. In
addition, there is tensile fracture in the most highly loaded tensile members on the faces.

As shown in Fig. 8, the material is stronger in compression. It is therefore plausible that members in
compression, fail by buckling, and support higher ultimate stress and strain than members in tension, which
fail by brittle fracture. It seems reasonable that the x direction model is most accurate because members fail
in tension, which is well captured by the tensile material response data and the truss analysis. The y di-
rection model may be less accurate because members fail in compression (buckling), which is poorly
captured by the tensile material response data and the truss analysis. The z direction model is somewhat
more accurate because members fail in tension as well as compression, and the model captures the tensile
failure mode.

For a unit cell loaded in compression, the ratio of maximum tensile stress to maximum compressive
stress is: for loading in the x direction, 0.602; for loading in the y direction, 0.337; and for loading in the z
direction, 0.347. Therefore tensile failure is most likely for loading in the x direction, and buckling is most
likely for loading in the y direction. These predictions agree with the failures in Fig. 10.

Young’s moduli, the shear moduli and the uniaxial compressive strengths of the truss material are
compared with those of a commercially available, nearly isotropic, closed-cell metallic foam (trade name
Alporas, Shinko Wire, Amagasaki, Japan) in Table 3. The relative densities of the two materials are within
6% of each other. The truss material has superior properties in all cases with the exception of Young’s
moduli for loading in the x and z directions. The shear moduli and the uniaxial compressive strengths of the
truss material in all three directions are significantly higher than those for the metallic foam.
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Fig. 13. Predicted member stress levels for a periodic truss material loaded in the (a) x- (b) y- and (c) z-directions. Member stress levels
are normalized by the maximum member stress for each loading direction.

Table 3

Comparison of lattice block properties to those of Alulight, a metal foam

Alulight Lattice block®
E; (GPa) 69 69
6, (MPa) 250 224
0"/ ps 0.151 0.142
x direction y direction z direction
E* (GPa) 1.68 1.13 4.33 1.26
a;, (MPa) 4.55 6.50 18.31 9.01
G, G.. G,
G* (GPa) 0.63° 1.17 1.17 0.89 (est®)

# Lattice block data are measured values, not model results.

° G for Alulight estimated assuming v = 0.33.

¢ G,, was not measured for lattice block, so the model value is given.
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7. Conclusions

The elastic moduli, the uniaxial compressive strengths and the shear strength of a 3D truss structure have
been calculated in terms of the relative density of the structure, the aspect ratio and the properties of the
solid from which it is made. The effect of sample size on Young’s modulus has also been quantified.
The calculated values of selected moduli and of the compressive strengths give a good description of the
measured properties. The truss material has improved properties over commercially available closed-cell
aluminum foams.
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